February 14, 2017 05:52 PM

At ambient condition, the chemistry of water is so stable that it is considered as the unit of hydrogen carrier in the hydrosphere. For a long time, cycling of hydrogen is equivalent to the cycling of water in the Earth’s solid crust and mantle. Geoscientists rarely treat water in its decomposable forms, like hydrogen plus oxygen. Using HPCAT facility, a team discovered hydrogen was freed from hydrous minerals in its elemental form.  More...

January 23, 2017 05:56 PM

A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. A research group utilized HPCAT facility and observed first experimental evidence of creating a metastable liquid directly by a different approach.   More...

January 18, 2017 03:37 PM

Extreme magnetoresistance (XMR) has been recently observed in a growing number of topological semimetals. Recent studies on (W/Mo)Te2 and (Zr/Hf)Te5 suggest that pressure suppresses the XMR and gives rise to superconductivity. To search for a relation between XMR and superconductivity, a research team used HPCAT facility to study the effect of pressure on LaBi.  More....

January 4, 2017 04:43 PM

Spin cross over may be induced by external stimuli such as light, heat, pressure, and magnetic fields, and provides an electronic origin responsible for corporative structural, electrical, magnetic, and/or optical alterations, with wide applications such as in memory, display, and sensor technologies. Based on recent experiments at HPCAT, together with electronic transport data, a research group observed a pressure-driven spin-cross-overs in the 2D honeycomb antiferromagnetic materials MnPS3 and MnPSe3 at room temperature.  More....

December 5, 2016 04:05 PM

Strong parallels exist between the packing of tetrahedra and network topologies found in H2O and SiO2 phases. For examples, tridymite and cristobalite are analogues of ice Ih and Ic, respectively; low-energy hypothetical ice analogues of quartz have been predicted theoretically. By loading binary H2 + H2O samples in diamond anvil cells, a team used HPCAT facility and discovered a unique hydrogen-filled, ice-based chiral structure with oxygen topology very similar to the mineral quartz and other, as-of-yet-hypothetical, three-dimensional nets.  More...