January 10, 2018 04:53 PM

Nanotwinning is known as a highly effective approach for strengthening structural materials and impeding the degradation of mechanical properties. Recently a major breakthrough was realized when nanotwinned cubic-BN (nt-c-BN) and diamond (nt-diamond) were successfully synthesized from onion-like nanoparticle precursors under high pressure conditions. More...

January 10, 2018 05:09 PM

At sufficiently high pressure, hydrogen is believed to become a monatomic metal with exotic electronic properties. Because of the very high pressures required to create such states, hydrogen-rich compounds have been considered alternative materials that could exhibit many of the properties of atomic metallic hydrogen, such as very high-temperature superconductivity, but at accessible pressures. With the help of theoretical predictions, a research team using the HPCAT facility has successfully synthesized superhydrides with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. More...

December 22, 2017 01:10 PM

The lead hybrid perovskite (e.g. MAPbI3, MA=CH3NH3+) solar cell has been under fast development, with the highest certified power conversion efficiency now exceeding 22 %. The type of perovskite has become the first solution-processable photovoltaic material to surpass the efficiency of dominant crystalline silicon panels. The recently discovered Cs2AgBiBr6 double perovskite exhibits attractive optical and electronic features, making it promising for various optoelectronic applications.  More...

December 22, 2017 03:22 PM

Rare earth elements are extensively utilized in a variety of applications including strong permanent magnets, lasers, lighting industry, automobiles, nuclear industry, and medicine. With one of the highest intrinsic magnetic moments (10.6 Bohr Magnetron) among the heavy rare earth elements, Dy exhibits a rich magnetic phase diagram under high-pressure and low-temperature conditions. A research team using HPCAT facility found that Dy has near-zero thermal expansion in the magnetically ordered state and normal thermal expansion in the paramagnetic state   More...

December 22, 2017 01:04 PM

A research team has recently developed a new capability at HPCAT. The thermoelectric properties of a polycrystalline SnTe have been measured up to 4.5 GPa at 330 K using the developed method. The SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition observed by X-ray diffraction measurement. More...